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ASYMPTOTIC EFFICIENCY AND

SOME QUASI-METHOD OF MOMENTS ESTIMATORS

R. R. Read
Naval Postgraduate School
Monterey, Ca. 93940

ABSTRACT

The report contains the asymptotic efficiencies of some candidate
estimators which provide alternatives to maximum likelihood in some common
probabilistic settings. The alternative estimators can be found with
measurably less effort than solving the likelihood equations. They include
the method of moments and similarly constructed estimators that involve
the harmonic mean. The most successful example found deals with the
negative binomial distribution. Here, the harmonic mean estimator has high
efficiency in regions where the method of moments estimator has rather low

efficiency.
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I. Introduction

The need for readily computed parameter estimates 1s great.

Maximum likelihood estimators are known to be asymptotically efficient, but
often they are very hard to find. The most popular alternative is the method
of moments which usually yields readily computed estimates, but sometimes
these estimates are not very efficient. This report looks at the efficiency
of the method of moments and of some similarly constructed 'quasi-method

of moment 'estimators.

The basic idea 1s to select a system of estimating equations which
equates various statistics to their expected values. The method of moments
does this for sample moments of order one, two, etc. We propose to consider
also moments of order zero, minus one, and perhaps other functions. The
examination of the consequent efficiencies may aid in the building of
intuition so that a wiser selection of estimating functions can be made in
new situations when they appear.

Moments of order zero and minus one require positive data. The former
is the geometric mean and the latter is the harmonic mean. They form part of

n r,l/r

a general family, f(r) = [% Zl xi] , of nondecreasing means (where XiseeesX

n
forms the data). When dealing with the harmonic mean, we will be setting
%E-ﬁ: (= [f(-l)]-l) equal to E(1l/X) because, for the parent populations
treated here, the latter value is easy to obtain. Similarly when dealing
with the geometric mean, we will be setting % 22 In Xy (= 1n £(0)) -equal to
E(ln X). In this form, the geometric mean appears in many maximum likeli-
hood svstems. This suggests that alternative quantities, that are close to
means with r = 0, might be profitably exploited. The results give some

support to this idea.

The structure of the efficiency computations utilizes the theoretical

work presented in a companion report [12]. The pertinent material is

1
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summarized in Section II of the present report. Section III contains
applications of the idea to two, one-parameter parent populations, Poisson
and symmetric beta. Some speculations for interpreting these results are
made. Section IV is devoted to two parameter settings; gamma, negative
binomial, and beta.

Much computational work is necessary to support this development and
the details are relegated to the appendices. Appendix A contains general
relationships among the required population moments. Specialization to
Poisson, gamma, negative binomial, and beta is contained in Appendices
B, C, D, E (resﬁ.). Computations are performed by APL programs and these

are included too, as Appendix F.

II. Methodology

It is assumed that the estimating equations have the form

g(x,8) = 0 (2.1)

where x = (xl,...,xn) is the data vector of a random sample from the specified
parent population, 8' = (81,...,6p) is the parameter point which belongs to

an open subset of p-dimensional space, and g' = (gl,...,gp). Primes denote
transpose. In order for the system (2.1) to have a unique solution é, it

is necessary (by the Implicit Function Theorem [16]) that the Jacobian

agl,...,g
aal,...,ep

J =

# 0.

The following structural assumptions are made:
(1) Each gj(x,e) for j=1,...,p 1is a symmetric function of x, i.e.

is invariant under permutations of KysersX e

12 JUPLPSN TR




(ii) E{gj(x,e)} =0 for j=1,...,p.

(111) Var(g(X,0)} = % C.(0) + o(%) FOr § = L,...sp-

]
(iv) The gj(x,e) have bounded continuous partial derivatives with
respect to 91,...,6p for j =1,...,p.

(v) 06, which is the solution of (2.1) is consistent and asymptotically

normal.

Assumption (i) is modest and expected of any reasonable estimating
scheme. The meeting of assumptions (ii) and (iii) is a matter of scaling
and arrangement. Assumption (iv) is needed so that the asymptotic covariance
matrix is well behaved. Assumption (v) is always desirable and convenient
since it implies that the estimators are asymptotically unbiased and the
ellipsoid cf concentration [4] is characterized in terms of the inverse of
the asymptotic covariance matrix. Efficiency computations are based on its
determinant.

Equipment for verifying (v) is contained in [9]. There, the functions
gj are averages of the form % 22=1 gj(xi,a) for j =1,...,p and this
structure is consonant with the present set of assumptions. All of the
cases treated in this report have this structure.

Much license is taken in what follows. The purist is referred to [9].
Let A(x,9) be the p by p matrix of partial derivatives {agj/aek}.

Assume that the elements behave as in (2.2)

~\
Ajk(x,e, > E{ng/aek} (2.2)

as n + ». The resulting limiting matrix is denoted bv A or A(8).

The assumptions allow the first order expansion

LIS e HE ARV S PO I, S SN N o ' T
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g(x,8) = g(x,0) + A(x,6 + 0p(8-8)) (8~6) (2.3)

where o 1is a diagonal matrix of random numbers belonging to the interval

{0,1]. Since the system is soluble, g(x,6) = 0 and we can write

(6-6) = -A 1 (x, 8 + p(8-0) g(x,8)) (2.4)

since the continuity of A implies that of A-1 and of g. Letting the

asymptotic covariance matrices, as n -+ «, be defined by

limit nE(9-6)(6-0)" (2.5)

=
]

(@]
1]

limit nE{g(X,8) g'(X,0)} (2.6)

it follows from (2.2) and (2.4) that

1

M=a"t ey (2.7

The method of maximum likelihood fits into this setting. The parent
population has density £(x,89), and (2.1) takes the form

3ln f(xi,e)

1. .1 - -
oS, = 0. =0 for T =1,...,p (2.8)

r

I o~

i=1

Assumption (ii) requires the regularity couditions [10] as does the relation-

ship

len ffx,@!)

= ni (2.9)
aer aek ;

E(Srsk) = -nk &

where A is the information matrix. Using (2.2) and (2.6) it is seen that

both A and C are equal to A and hence

M=A 2.10)

follows from (2.7).
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Now suppose that only the first q 1likelihood equations (2.8) are
used in the systefn g = 0. Let us denote this subset by y = 0, and the

remaining p-q equations by h = 0. Thus in partitioned form (2.1) becomes

g={"1=0 (2.11)
h
Proceeding formally, (2.6) becomes
E(up") E(uh") C c 1
C = 1limit n } = 1 2| (2.12)
1 1
E(h'u) E(hh'") €y 022’

The information matrix can be partitioned likewise

‘ M1 Ay l (2.13)

Further, define a p-q by q matrix

|
P

' yq (2.14)

By = {E(ahj/aek)}, 3 =1,0..,p-q; k =

and a p-q order square matrix

[
b
-

gzz = {E(ahj/aek)}’ J +sP—q; k = q+1,---,P (2-15)

It is shown in [12, Sec. IV], that

- 1
j Ay g1 )
C = 1 ‘ (2.16)
' g €22
. where C,, 1is as (2.12),
. { M1 Ay
A= (2.17)
l 821 S22
5
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IR e ST
Mt = (2.18)
Ny, H
where ?
1
= - _ ]
Ho= 851611010 = Ap1C198pp = (Ry1819829) " + 85569989
P -1 -1 .
Gy = thyp - 8128508y ;
-1 (2.19) '
— 1 ]
G1o = 111821692
_ - -l 1 "'l
Gyy = {Cpp = 859017899}
Because of (2.7), the determinant of (2.18) is
- 2
M 1} = |al“/|c! (2.20)

and it is useful to draw attention to its computation. Using partitioned

form, see [6, p. 165], 1its ingredients have determinants

Ll

el =18 1hey, - 8yhi18))
(2.21)
B _ -1
lal = 1)) ey, = 8107701
and this is useful in computing the asymptotic efficiency, [12]
- =1y (a
Ef£(8) = [M |/ ]A] (2.22)

In the special case of p =2 and q =1, (2.19) reduces to




T o

a? sy,

L. @#“mz*., LT R L N T ‘ » - T

1,2 2
H= TeT (12807 — 2hy282180 + My183)) (2.23)

and the determinant of M-l reduces to the especially convenient form

2
- (811859 = A;585,)
IM ll - . 11°22 12°22 (2.24)
AL LC - g2
11722 21
and the denomination of (2.24) is |c]|.
III. Single Parameter Settings
Poisson.
The Poisson random variable X has density
A X,
f(x;Aa) =e "2 /x: for x = 0,1,... (3.1)
and the derivative of the log likelihood is
= X 2)
s =3 1 (3.2)
It is well-known that
p=pshH =1 (3.3)

and the sample mean is the minimum variance unbiased estimator for all sample
sizes. It is also the maximum likelihood estimate and the method of moments
estimate.

Let us look further solely for academic purposes. Since the Poisson
has the property that its mean is equal to its variance it follows that the

sample variance s is also a "moment" estimate of . Moreover, the idea

7
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can be extended. There are many other statistics that can be equated to
their expected values and the resulting equations solved uniquely for A.
One other will be considered here, namely, the averages of reciprocals of
the {1 + xi};. The one is added as a convenient device for avoiding
division by zero. The result will be called the harmonic mean estimator.
Since 32 is directly an estimate of X, its asymptotic efficiency

is quickly and easily expressed. Using (2.22), (3.3), and (B.5) we have

Eff(s2) = —*—2 (3.4)

A+ 22
The harmonic mean estimator is characterized by the equation (see (B.7))

la-eMh-=o0 (3.5)

<
]
>|

where

n
= ly__1
Y= a § 1+ x (3.6)

Equation (3.5) is in the form g =0 (i.e. (2.1)) and satisfies the assump-—
*

tions. The resulting estimate, A , can be computed using the iteration

function that falls naturally out of (3.5), namely,

=X

=Lg-e (3.7)

Ar+1

«

*

and Ar - X for all initializations AO > 0, but convergence can be
quite slow if a poor AO is chosen. Then asymptotic variance C (see
(2.6)) of (3.5) is the variance of (1 + X)-l which can be computed from

(B.7) and (B.8). The quantity A of (2.2) is obtained by differentiating

(3.5) with respect to A,




At-l‘g(l-e -2 My . (3.8)
A

*
Using (2.22), (2.7) we have Eff() ) = AZA/C, or more explicitly

EEE(AT) = % a-e?

-1, 2 1

N - e ) /Var(iii) (3.9)
The efficiences of the two estimators are compared in Figure 3.1.

Of course there is no point in using any estimator other than X = x, but

the graph suggests that the harmonic mean may be profitably used in other

problems in which a choice must be exercised.

Figure 3.1
Asymptotic Efficiency
( Poisson )
1.0
Eff (\¥)
8
.6
4+
2
Eff (s2)
' 2 4 6 8 10 12 14 16 18 20

..

- -
- -




Just for fun, let us compare the values of the three estimators §,

*
sz, X  when applied to some famous data. First, the number of deaths due

to mule kick in 200 Prussian army corps years. The frequency counts are
109, 65, 22, 3, 1 for variable values O thru 4 [7, p. 109]. The estimators

are

% =0.61, s2 = .6109 , A¥ = .6093

and agreement is rather good. Second (Rutherford Chadwick data), the
number of radioactive disintegration in 2608 time intervals of 7.5 seconds

each {4, p. 150]. This time we have

% = 3.867 , s? = 3.633 , \¥ = 3.886 .

The sample size is much larger but the value of A 1is in a range of lower

efficiency for sz. Also, the radioactive decay is more properly modeled

with a pure death process and this may help explain the smaller value of 52.
One final comment. The convergence of the iteration function (3.7)

has importance in finding the maximum likelihood estimate for X from a

Poisson population in which the zero values have been truncated. That is,

a trial that produces no counts does not come to the experimenter's

attention [10, p. 3~13]. The density is

sl
~~
[
M
>
g
(]
m
i
>
|>»
o %
»
[
’—l
[3%
.

’—l
]
®
s
LS

and the maximum likelihood equation is

which, as a function of A, is the same as (3.5).

10




Symmetric Beta

A Beta random variable with equal parameter values has density

f(x,a) = —Ligllf xa(l—x)a for 0<x<1l,0<a
{r(a)]

Using the psi function [1],

-4 1n ['(a)
y(a) da

one can write the derivative of the log density as

w
[}

2y(2e) - 2y(a) + In(x(1l-x))

and

=
|

= 2y'(a) = 4y'(2a)

by (2.9). Let 1n x =

o=

equation as

wa) ~ p(2a) = 5 {In x + 1In(l-x)}

N

-

(3.10)

(3.11)

(3.12)

(3.13)

Z?-l 1n X and express the maximum likelihood

(3.14)

so a, the maximum likelihood estimate, is a function of the geometric

mean of x and 1-x. Also, it is difficult to find.

Let us turn to the method of moments. Because of symmetry, see (E.1l1l),

(E.12),

2 1

I § -1
W= C TZR«+ D

Thus x cannot be used and we turn to the second moment.
becones

2 1

“iarDn "0

ind the estimator can be found explicitly

11
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N =—1—2-% (3.16)
8s
and using (2.2), (2.7) produces
- 4 2
n Var(ae) = 4(2a + 1) ° Var(s®) (3.17)

The right side of (3.17) requires that (E.2) be used with (A.2). The result
is not compact and is produced only by computer program.

A harmonic mean option is available since

1 20 - 1 1
E(i.) = -~-—cx 1 = E(ﬁ) (3-18)

(see (E.13)) for a > 1, and the variances are finite if o > 2. Easy
calculations, exploiting (E.14) and (E.l5), show that both y and 2z,

where

n n
12 1 1
y==7=, z==7 , (3.19)

should be used instead of either one alone in order to reduce variability.

We select the form g =0 to be

(0= 1D(y+2)~-(4a ~2)=0 (3.20)
and solve explicitly
* -2
LYt 2 2
a v +z -4 (3.21)

Application of (2.2), (2.7), (E.1l4), and (E.15) produces

(2a - D(a - 1)?
a -2

*
n Var(zx ) = for o > 2 (3.22)
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Figure 3.2
Asymptotic Efficiency
( Symmetric Beta )

The efficiencies of these two estimates are compared in Figure 3.2.
The second moment estimator, a, is uniformly better than the harmonic mean
*
estimator, o , and this result needs interpretation in the light of the

l and (1-}()-l

success in the Poisson case. This time the averages of X
were used instead of (1+X)-l, the latter being difficult to manage with

the beta distribution, and the parameter must be at least two in order

for the variance to exist. Also the positive sample space is 0 < x < 1,
which entails large and variable values for the {xgl}, and this may explain
the lack of success. The estimator a* may still have some uses because

(unlike ) we have a simple explicit expression for its variance (3.22

and its efficiency is competitive for o more than (say) four or five.

13
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IV. Two Parameter Settings

Gamma

The gamma random variable X has density

1 £1-1 e-x/B

f(x5a,8) = S (4.1)
T(a)B
and the partial derivatives of its logarithm are l
i
X _a :
S =—< -+
B BZ 8 (4.2)

S =1lnx - 1n8 - y(a)

where y(a) 1is the psi function (derivative of log gamma). The maximum

likelihood estimators (&,é) is found from (4.2) by replacing x with X 1
and 1ln x with 1n x = %-Z? 1n Xg. Thus it fits into our generalized
moment scheme utilizing the arithmetic and geometric means. To solve the
system, one sets 8 = x/a into the second member of (4.2) and search for
the root of lna - v(a) = In x - I;—g, which requires a psi function
capability [1,3]. This is not difficult with a large computer, but may
be a challenge for a small one, e.g. a hand held calculator. Viable
alternatives are available using the ordinary method of moments and a

generalization that exploits the harmonic mean.

The information matrix (2.9) is

a/8? 1/8
A = | | (4.3)

l 1/8 v'(a) $

whose inverse is




Note:

hood (§/B2 - a/8 = 0), there is no advantage to using this, through (2.18),

82y (a) -8
-1 1

A &y @)1

(4.4)

where primes denote derivative.

The ordinary method of moments equates x and s2 to af and aBz,

respectively, and the resulting estimator is

8 =s/x , o = %2782 (4.5)

Using 91 =8 and 8, =a 1in order to conform with (4.2), one can apply

2

(2.2) to obtain

(4.6)

Although the method of moments shares an equation with maximum likeli-

in this case.

The matrix C is obtained from (C.5), (C.6), and (C.7). Then (2.7)

can be applied to get

and

ﬁi 2a + 3 -8
a  2(a+1)
M = 2(a+1) (4.7)
_B a
M| = 2(a+1)3° (4.8)

Turning to another choice, let us recognize that the ordinary method

of moments uses moments of order one and two, while maximum likelihood

uses moments of order one and zero. Heuristically one might find advantage

15
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in moments of order one and minus one. Consider for the system (2.2)

(see (C.2) and (C.8)),

x-aB =0
(4.9)
1
Yge-n - °
where y =-% Z? l/xi and the consequent estimators
* - * X
8 =x-% o 2 (4.10)

* *
which satisfies 8 > 0 and a > 0 since the arithmetic mean is larger

than the harmonic mean. Proceeding as before we obtain, for a > 2,

|7 T |

A = l 1 1 ‘ (4.11)
82@-1)  8(-1)>
and
32 _&0;% -8
2 2(a-1)
M* = 2(@-1)" (4.12)
a - 2 -8 “S
and
* 2 (a=1)2
M| = 28" 2=~ for a > 2 (4.13)

The asymptotic efficiencies of the estimators (4.5) and (4.10) are

computed from (2.22) using

Al = —13 (aw'(a) = 1) (4.14)
8

These efficiencies do not depend on the scale parameter, 8, and can be

16
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plotted as functions of «, as is done in Figure 4.1. Also, the former

* % ~ -
appears in [15]. The alternative (a ,8 ) catches up to (a,8) at o« =3
and remains better thereafter. The relative efficiency of the latter with

respect to the former is (see (4.13) and (4.8))

1{1*1 - (a-1)? (4.15)
]MI (a-2) (a+1)

It is less than 100% for all o > 3 and falls below 90% for 4 < o < 7.

Figure 4.1
Asymptotic Efficiency

( Gamma ) % %
Eff (o, 3 )

Eff (x, 3)

FIGURE 4.1. Asvmptotic Efficiency (Gamma)
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As a numerical example, the three estimators were applied to 135
observations on the service time of the check-in queue at a major hotel.
The gamma distribution fits quite acceptably according to chi square

criteria. The results are:

- ~ *
8 = .303 g = .305 £ = .298
a = 6.33 « = 6.31 o® = 6.45

Counterexample: This opportunity is taken to show that the representation

(2.18), which is the main theorem of [12] , is false when one drops the
assumption that the subsystems u = 0 (2.11) are likelihood equations.
We use the system

_ 1
Y7 B@-1)

52 - a82 =0

which has an equation in common with the method of moments (4.5), vu. this
common equation is not part of the maximum likelihood system. This system

has explicit solutions

g— +/§+432;, ;*=1+;§§

One readily develops, using (4.11) and (4.6)

~ %
B =

Nl
< -

N S 1
2 2
H —x ‘ B (a-1) 3(«~=1) )
A =
_ l 2a8 82 ‘
.
. and from (C.7), (C.9), (C.1l)
&
§ 18
a
® b v RN TTTCE S S & L L L R




é
<
-
.
<

1
3 3 0
B (a-1)" (a-2)
~%
CcC =
4
0 2aB  (at+3)
-1 vA—l
Using M = A'C "A, we calculate
2 l2 + 22a B(Z:i) + e(i+3)
B (a-1)"(a=2) B (a+3)
W1

a=2 + 1 a=-2 + 1
B (a-1) B8(o+3) (a—l)z 2a (a+3)

and this, clearly, has no submatrix in common with (upon inverting (4.7))

a 8 I
wl - 33 _
8 a gi 2a +3 ‘

s a 2(a+l)

Negative Binomial

The negative binomial demsity is parametrized

f(x;r,p) = i%f%%%y q*pt for x =0,1,2,... (4.16)

0 <r, 0 <p <1, ptq = 1

and the partial derivatives of its logarithm are

S =r/p - x/q
(4.17)

wn
]

wr+x) - (r) + 1ln p

Using the basic recursive formula for the psi function [1],




= 1
W) - y(@) = §

one may express the system of maximum likelihood equations as

x - rq/p =0

X (4.18)
i
ave )

1
— 2 4 1lnp=0
i=1,...,n ja1 T 1%

Solving (4.18) is quite difficult to manage without a large computer.
Appendix F contains an APL program (PSIB) which accomplishes it.
The information matrix can be developed using (2.9). The result is,

using 61 =p and 8, =r,

2
‘ r/qp2 -1/p )
A =l s (4.19)
-1/p 1\22
where
A22 = 3'(r) - EQ@'(r+X)) (4.20)

The properties of A22 are developed in Appendix D (see (D.22) and (D.26)),

along with the series representation of the determinant (D.25),

_ 1 T gn r! n!
|a] = 2 ) n+ 1 (ntr)! (4.21)

p n=l

which converges rapidly for most values of p. For purposes of computation,

one may as well use (4.21) in (4.19) and solve for Azo’ thus

, 1, 2,001 ,
22 % 1q {1+ p7in]} (4.23)

B

. A e

.
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To estimate by the ordinary method of moments, we use (D.5) and form

the system (2.1) to be

px - rq =0
(4.24)
p252 -rq=0
The explicit solution is readily seen to be
~ * . ;.(2
P="7> r=— (4.25)
s s” - x

and it cannot be guaranteed that p < 1 and ; > 0. Differentiating (4.24)

and taking expectations yields the matrix

(o

A= (4.26)
l" r(1+q) _ s
- q

Combining (2.6), (4.24) and (D.6) produces

S $ 1 1+q l

q (4.27)
14 q 1+ 2(r+2)q + qzi
and finally the formula (2.7) j
2.2 q
s PYa" (1 + 3Ty Pq 1
ﬁ - 2(r;1) ( (4.28)
§ rq l 2
pq r :
: |
~ and
L 2
'Y M = 2(x+l)p"/q (4.29)

21




Let us turn to the question of using a different moment in the second

equation. Since the negative binomial has positive probability mass at
zero, we use averages of the (1+x1)”l as was done when the Poisson case

was considered. Perhaps that level of success can be matched.

Letting y = %-22 1/(1+xi), use for the system (2.1)

]
o

px - 1q
(4.30)

1}
o

(r-1)ay - p + p*

because of (D.7). The system (4.30) cannot be solved explicitly, but it

can be managed with a hand held calculator. Use the first member to obtain r

as a function of p and its derivative
r =22 dr _ x_ (4.31)
q 2

and substitute into the second member of (4.30) to obtain a function f

of the form

f(p) pr + (r—l)qy - P

=pf - y+ply - 1+%y) (4.32)

and having derivatives

s it o b o

r—
£o(y-1+5p +2xatinp)
dp 2

q
The solution of f(p) = 0 can be obtained by Newton's method, always
remembering to update r as well as p. The initialization p = .5 and

r=x appears to be satisfactory, but normally convergence would be faster

if the moment estimators (4.25) are used.




* %
The resulting estimator will be denoted by p , r . From (4.32) it

is seen that

£(0) = -y <0, £(1) =xy >0

% *
so that 0 <p <1, and r >0 follows from this by (4.31).
Let us turn to the development of the asymptotic covariance structure
x %
of p, r . Taking partial derivatives and the expectation of (4.32) to

produce the coefficient matrix A of (2.2) yields

j r/p -q
* |
A = ( (4.33)

l r-1 1 - pt - pF r

with the help of (D.7). Attention is drawn to the fact that

r
limii %—:—E— =p-plnop (4.34)
r -

The covariance matrixz C of (2.6) is derived from (4.30) with the help of

(D.5), (D.7), and (A.5). The result is

‘ rq rqp’ - p(1-p") I

*

C = (4.34)
Irqpr - p(l—pr) (r-l)zq2 Var(I%K)‘

Let us draw attention to the fact the first equation of (4.17) is a multiple
of the first equation of (4.32) rather than being identical. This is the
reason that (4.33) and (4.35) are modifications of (2.17) and (2.16) rather

than exact analogies. Thus the bookkeeping that follows must be done

carefully.




*

The direct development of the matrix M from (2.7) with (4.34) and
(4.35) as input is messy. Instead let us recognize that (4.30) shares an
equation with the likelihood system (4.18) and use (2.18). Thus, with A

given by (4.19), we have

r/qp2 -l/P)

M = (4.36)
-1/p m22 ‘

where M22 is obtained from (2.23) and |C| from (2.16). Thus

C
22 1V 2 2 22

M= Ter )z 822t p BB * 2|

ap P (4.37)
T 2
¢ = o0’ €22 = 831
*
and (g.., 8,,) 1is the second row of A in (4.33) and C is taken from
21 =22 22

(4.35). Using (2.24) we obtain

el o 1 2

and (4.36)
1, _ 2
1+x 821

IC' lé-(r-l)zq Var(

P

The asymptotic efficiencies of (;,;) and (p*,r*) appear in Tables
4.1 and 4.2, resp., for p = .1(.1).9 and r = .5(.5)5, 6(1)19 where the
parentheses indicate the indices of advancement. The efficiency of (5,})
is monotone increasing in r for each p. It is lower for the smaller
values of p. The efficiency of (p*,r*) is high for the smaller values

of r and decreases (generally). It is not monotome for p = .1, .2.




* ~
The relative efficiency of p , r with respect to p, r, i.e.,
* o -
Rel eff = |M |1 M|

appears in Table 4.3. Generally p*, r* is preferable for r 1less than
or equal to (say) 2.5. In general ;, ; is preferable elsewhere, but it
does not matter much for small values of p.

The three estimation schemes were applied to the Cricket score data

of Reep, Pollard and Benjamin [13]}, which provided the following comparisons.

Cowdry Barrington Graveney

x 1.692 2.095 1.570
s 4.343 4.939 4474
(1+x) "t .603 .538 .626
107.

.317
.729
.351
.849
.389

1.000
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Beta

The beta density has the form

. - T @) a-1,. . B8~1
£ (x50 ,8) T(a) r(@) * (1-x) (4.37)
for 0 <x <1, O0<a, 0 < B
and the partial derivatives of its logarithm are
S = y(a+tB) - y(a) + 1n x
@ (4.38)
g = vlat) = y(p) + In(l-x)
The information matrix 1is, for 61 = qa, 92 =B
s P'(a) - ' (at+B) -y (o+8) I
A= (4.39)
l - Y(o+B) v (B) - w'(a+8)$
The system of maximum likelihood equations
In x = (o) ~ Y(ot+B)
(4.40)
In(l-x) = y(B) ~ y(o+B)

uses the geometric means of x and 1-x, and is difficult to solve. What
other pairs of statistics might be substituted?

Clearly x and ?I:§7 cannot be paired since they are functionally
related. The latter is merely 1-x. Let us first develop the ordinary

method of moments. Using (E.4) and (E.5), choose the systems

0

(a+8)%X -

1]
o

(4+8)% (u+241)s? - aB

and solve explicitly for




.

Ve .

PULRRPE

- _ 82 - k(1) - 82 - x0-®)

a = g = (4.42)
1-x X
It may occur that & <0, é < 0.
The coefficient matrix A of (2.2) is
o . -
A= prey . . (4.43)
BGrer * 8 —Creen * ‘*)‘
< _ag
|A] = TTEeT 1 (4.44)
and C of (2.6) takes the form
aB 3 = 2
T+BHL (a+8) “(o+B+1) Cov(x,s )1
Cc = (4.45)
(a+5)3(a+8+l) Cov(E,sz) (a+s)4(a+s+1)2 var(sz)

and the use of (E.2) thru (A.1l) and (A.2) does not appear to simplify in
2
any useful way. Appendix F contains programs to compute M| = |C|/]A|~.

Let us turn to the pair of statistics

<
[]
3 |
=~
”
Nl
N
[[]
=R

which are not functionally related. Using (E.8) we may choose the system

(a-1)y - (a+3-1)

]
o

(4.47)

]
o

(3=1)z - (a+3-1)

for 2 > 1, 3 > 1. The solution is

30
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o = izl ¥ = =2l (4 4g)
yz y z yz y z

Clearly y > 1 and 2z > 1 but the denominators are not necessarily positive
since zy -y -2z + 1 = (y-1)(z-1) can be less than one.

For the system (4.47) the coefficient matrix becomes

A = (4.49)

and with the help of (E.9) and (E.10) one can calculate

8
P ) '1\'
¢* = (at2-1) S (4.50)

a
-1 82

for a - 2, 3 > 2. Use of (4.49) and (4.50) in (2.7) does not produce a cocn-
venient expression for M*. However its determinant is easily managed.

For fun, let us also try a system based on moments of order one and
minus one. (This would seem to straddle the two geometric means appearing

in maximum likelihood.) We are lead to tot

(a+8)x - a = 0
(4.51)
(a=1)y - (a+8=~1) = 0
N and the resulting estimate
- ’;* - (v:l)x - (v—i)(l-x) (4.32)
yx-1 vx-1

L
=

-
-
.
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* *
and this satisfies o > 0, 8 > 0. (But do not forget that use of (E.6)

in (4.51) requires a > 1l.) Proceeding in the usual way, we calculate

_ 8 o
a + 8 a + B
~%
A = (4.53)
B -1
o -1
af
a+ B +1 -8 )
~ %k
c = 4.54)
-8 B (a+B8+1) ‘
a - 2

~ %
Again M does not have a convenient form. The determinates of (4.52) and

(4.53) are expressed

o =8
1Al = Gy D
(4.55)
2
28
fe| = a - 2

The efficiencies of (4.42), (4.43), and (4.52) are compared in the

tables that follow. Table 4.4 contains the efficiency of the ordinary moment

2D

estimator. Efficiency is high if g 1is not too far from 3 and both are

at least two. Elsewhere they are low, but still the choice because all the

numbers in Table 4.4 are better than their competitors in Tables 4.5 and 4.6.

* % % %k
The pair (a ,8 ) 1is generally better than (2 ,8 ) but not uniformly so.
It matters little since (a,3) is the "hands down'" winner. This result
-1

parallels what was learned in the symmetric beta case. The variable X

is unstable in this population.

!
g
i
%
i



TABLE 4.4. Eff(&,s) BETA POPULATION

.5 1.0 1.5 2.0 2.5 3.0 3.5
.5 0. 493 0.554 0.537 0.507 0.u77 0.451 0.u429
1.0 0.554 0.713 0.747 0.739 6.718 0.696 0.67&
1.5 0.537 0.747 0.820 0.839 0.835 0.822 c.806
2.0 0.507 0.739 0.839 0.878 0.389 0.867 0.878
2.5 0.477 0.719 0.835 0.8€E89 c.%1z ¢.919 C.91¢
3.0 0.451 0.696 0.822 0.8&7 0.919 0.93% 0.93¢
3.5 0.429 0.674 0.806 c.878 0.91¢ 0.93¢ 0.94¢
4.0 0.411 0.653 0.790 0.867 ¢.91z 0.93¢ $.952
4.5 0.395 0.635 G.774 0.855 0.904% 0.933 0.951
5.0 0.382 0.618 C.758 0.843 0.895 0.823 0.945 3
5.5 0.370 0.604 0.744 0.831 0.856 0.921 0.944
6.0 0.360 0.591 0.731 0.819 0.876 0.91u 0.93¢
6.5 0.351 0.579 0.71¢ 0.809 0.867 0.90¢6 0.533
7.0 0.344 0.568 0.709 0.799 0.85¢ 0.8989 0.827
4.0 4.5 5.0 5.5 6.0 6.5 7.0
.5 o.u411 0.395 0.382 0.370 0.36C 0.351 0.34¢t
1.0 0.653 0.635 0.618 0.604 0,591 0.579 c.563
1.5 0.790 0.774 0.758 0.7uy ¢.731 0.71¢ 0.709
2.0 0.867 0.855 0.843 0.€831 c.819 0.809 0.729
2.5 0.912 0.904 0.895 0.886 0.876 0.8867 0.858
3.0 0.93¢ 0.933 0.9z2¢8 0.921 0.914 0.906 0.889 g
3.5 0.952 0.951 0.9438 0.944 0.938 0.932 C.927 :
4.0 0.959 0.961 0.361 C.95¢ 6.955 0.851 0.2ub
4.5 0.961 C.966 0.968 0.96¢ 0.966 C.963 G.960
5.0 0.961 0.968 0.972 0.973 0,873 0.972 0.969
5.5 0.958 0.968 0.973 0.976 0.977 0.977 0.976
6.0 0.955 0.96686 0.973 0.977 0.980 0.980 0.980
6.5 0.951 0.963 0.972 0.977 0.980 0.982 0.¢83
7.0 0.946 0.960 0.969 0.9768 0.98¢C 0.983 0.984
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TABLE 4.6.

.5 1.0
0.119 0.202
0.163 0.276
0.184 0.313
0.196 0.333
0.204 0.346
0,209 0.355
0.212 0,361
0.215 0.36606
¢.217 0.369
0.218 0.372

4.0 4.5
0.378 0.389
0.51¢9 0.534
0.588 0.605
0.627 0.646
0.€53 6.672
0.670 0.690
0.€82 0.703
0.€91 0.712
0.698 0.719
0.704 0.725

1.5

0.258
0.353
0.400
0.kZ6
0,443
0,45k
0.u4b62
0.L468
0.u473
0.u476

5.0

0.39¢
0.546
0.618
0.662
0.688
0,707
0.720
0.730
0.737
0.743
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2.0

0.297
Q.u407
0,461
o.u4c2
0.511
0.524
0.534
0.541
0.546
0.550

5.5

0.u406
0.557
0.632
0.675
0.702
0.721
0.734
0.74L
0,752
0.758

~k o~k
Eff(a ,8 ) BETA POPULATION

2.5

0.326
0.4u7
0.506
0.540
0.561
0.576
c.586
0.594
0.600
0.604

6.0

0.u12
0.566
0.6u42
0.68¢6
0.714
0.733
0.746
¢.757
0.7865
0.771

3.0

0.347
0.u77
0.540Q
0.576
0.5989
0.613
0.626
0.634
C.641
0.645

6.5
0.418
0.57u
0.651
0.695
0.724
0.743
0.757
0.768
0.776
0.782

3.5

0.364
0.500
0.5¢66
0.605
0.€29
G.6u45
0.657
0.666
0.673
c.67¢8

7.C
0.423
0.581
0.659
0.704
€.735
C.752
c.7¢8¢
0.777
0.785
0.792




APPENDIX A

General Variance and Covariance Formulae

Connecting the Mean, Variance, Harmonic Mean

Let X,,...,X be a random sample of size n and denote the sample
1 n
mean with
n
= 1
X=;XX1,
1
the sample variance with
2 1 ¢ 2.2
S a1 % &=,
the inverse of the harmonic mean with
k =17 L
= »
n 1 Xi

and the inverse of the shifted harmonic mean with

It is well known that E(X) = U, E(sz) = 02 when the population mean, u,
and variance, 02, exist. Let m, o= E(Xr) and ML = E(X—u)r. The follow-

ing relationships are needed.

. = 2 1 _ 3,
Cov(X,s7) = 5 {m3 3m2m1 + 2m1A

")

. =1

. =a M (A1)
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2 =2
y ;-0
1

1
Var(n

Cov(i,Y)

Cov(X,Y")

Cov(sz,Y)

Cov(sZ,Y')

The proofs of (A.

the relationships

To enhance the readability, the symbols

expectation, variance, and covariance (resp.).

will be used sparingly.

2 2 2
Hy = My (u4-2u2) Wy " 3u2
—= - 2 5 + 3 (A.3)
n n
2 {1 - E®) E1/D) <0 (A.4)
Lo+ E®] ECE)) <0 (A.5)
n 1+X *
-1 B/ + m - 2m2EC(L/D)) (a.6)
n = 2 1 1 '
- % fugm_) = w'm_, + ul
-l s - ?) EGEy 1 + ) (A.7)
n 2 1+X

1) to (A.7) follow.

=u3

It is convenient to record

2
Moy +u

3y + W3 (A.8)

2 4
My, + 4u3u + 6U2L + U

E, V, C will be used to denote

Parentheses and subscripts




Proof of (A.4). Consider

EXY = % EZX, Z(1/X,)

l'lz j

= .15 {n + n(n-1) EXE(1/X)}
n

from which we subtract EXE(1/X) to produce (A.4). The fact that (A.4) is

negative follows from the presumption that X > 0 and the consequence that

the harmonic mean is less than the arithmetic mean. Thus (ave Xi) x (ave i}) >1
i

unless (all S constant) and apply the law of large numbers.

Proof of (A.5). Follows from the fact that C(1l + X)Y' = CXY' and the

application of (A.4).

Proof of (A.6). Consider

2

n(n-1) Es°Y 1

=.2
L = -
E Xi T (xj X)

1 2 =2
= P z -
E X ( Xj nX")

i

Ei 1 XiX,

= EIX - = zrr—d
Xi n Xk

_ 2.1

= nEX + n(n-1) EX'E X" EX - 2(n-1) EX
- (o-1) EX’E £ - (n-D)(n-2) E’XE %

b
and divide through by (n-1) to get

38
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nEs’Y = ~EX + (n-1) EXE § - (n-2) E'XE %
1 2.1
-m, + (n-l)mZE X (n—Z)mlE X

Then subtract n(mz-mi)E-% to obtain the first version of (A.6). The

second version follows from (A.8).

Proof of (A.7). Follows from (A.6) because s2 and W, are invariant under

trans lations.

Proof of (A.1). Let us work with

1
n(n-1)

EXs 2 E{zX’IX, - L (zx.)3}
i3 n i

E?H%IT (nEX? + n(n-1)EX’EX - EX° - 3(n-1)EX’EX- (n-1) (n-2)E X}

=T

(EX> + (n-3)EX%EX - (n-2)E°X}

o

{my + (a-3)mym, - (n—2)mi}

and subtract m,m, - mi. The second version follows from (A.8).

Proof of (A.2). Let us begin with

4

: iy 2eb 2,2 2 2,32 1 4
. (n-1)%Es” = EGXD - & EIX(EX)7 + 55 B(x)”

n

and treat the three main ingredients separately.




ot o

E(zxf)2 = nEx* + n(n-1)E2X? (A.9)

2 2

EXi(ZX )2 = nEX4 + n(n-l)EZX + n(n—l)(n—Z)EXZE X + 2n(n-l)EX3EX (A.10)

3

E(xxi)4 = nEX® + 4n(n-1)EXOEX + 3n(n-1)EX® + 6n(n-1) (n-2) EX°E2X

+ n(n-1) (n-2) (n-3) E*X (A.11)

The proper combination of (A.9), (A.10), and (A.1l) produces

Es® = % (Ex* - 4EX3Ex

2

+ E%I [(n2-2+3)E2X2-2(n=2) (n-3) EX°E®X+ (n-2) (n-3)E*x]}

The subtraction of 04 in the form

04 = EZX2 - 2EX2E2X + EAX

yields

2 4 2 4

4 EX + 3E2X - 4o +—o0

- 4EX3

nVs2 = EX

and this is (A.2). The second version follows from using (A.8) and wmodifying.

Proof of (A.3). The variance of this form of the sample variance can be

developed from (A.2) using (A.8). It also appears in [7, p. 183].
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APPENDIX B
Moments of the Poisson

The Poisson random variable X had density

A

£(x;0) = e * A %/x! x =0,1,2,... (B.1)

and it is well known that u = ), 02 = A. The probabil 'ty generating function
is

G(u) = E(u¥) = e (170

(B.2)
and the moment generating function can be obtained from (B.2) by the replace-
ment e" for u. Moments can be obtained by repeated differentiation.

We record

E(X) = ) :
|
E(xY) = 2%+ %
Bx3) =4+ n2 43 (8.3)
Bt = a + 2+ a3 403
Use of (B.3) into (A.2) produces *
Hy = A 4 322 (B.4) '
| var(s?) = 2 (2% 421 + oD (B.5)
.
7‘; Cov(I-(,sz) = % A (B.6)

e -
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By

The moments of (1+X)‘1 can be obtained by integrating the

generating function (B.2)

1 1 1
E(I%i) = E f uxdu = f G(u) du = e-xf e>‘u du = %-(1—e_x) (B.7)
0 0 0
1.2 11 X X - Auv
E(=) =E f f uwv dudv= S/fG(uv) dudv=e" [f e du dv
1+X 0 0
-2 1 Au_ “x e 1 3 j-1
- eA f e : 1 du = ex Z I ) u, du
0 10 I
o j-1
-A A
= e Vo=r (B.8)
1 33

This opportunity is taken to record an alternative way of obtaining
moments, (B.2), which in this case is somewhat easier than the differentiation
of the moment generating function. One begins with the generating function
G(u) = E(ux) and replaces the argument u by a product of dummy variable
uv -+« z containing as many factors as the order of the moment to be calcu-
lated. Then one takes a partial derivative with respect to each variable
u, v, etc. and the desired moment is obtained when each variable is set to

unity. For example, E(Xz) can be obtained from

2 2

X-1 X-
G(uv) = du v ? 1vx '

Ev)¥ = E(X°u

) (B.9)

uv du v

The four moments (B.3) can be obtained in this way replacing u

with uvwz 1in (B.2). The resulting derivatives are




wE

T T T

.

v

4’ . AW

= AG[1l« puvwz]

s AG{z[1 + Auvwz] + Auvwzz[l + Auvwz] + Auvwzz]

= Auvw Guvw + AG{[1 + xuvwz] + ziuvw + 2ziuvw(l+iuvwz)

R —

+ quzvzwzz




APPENDIX C

Moments of the Gamma

The gamma random variable X has density

1 x:cx—le-x/s

f(x;u,B) = o
r{a)B8
and it is well-known that
u = aB 02 = af

Direct integration produces the formula, for r > 0

r T (a+r)

r -

and for r < a

E(X-r) - 1 T(a~r)

Use of (C.3) in (A.1l) and (A.2) produces

Var(X) = % a82

Cov(i,sz) = %'a83
2 4 a 3
Var(s™) = 2a8° (7 + 7))

Using (C.4) one readily calculates

(c.

(C.

(c

(c.

(C.

(c.

(C.

1)

2)

.3

4)

5)

6)

7)




]

¥ S

TRRAIRE

l B ee——
E(i) = B(a-l) ]_ < Q (C-S)

1

_—l . .9
82 (a-1)%(a-2) ¢

Var(%)

and letting Y = = J% (1/X,), we find that, with the aid of (A.4),

1

Cov(X,Y) = m 1< (C.10)
and with the aid of (A.6)
2
Cov(s™,Y) =0 (C.11)
Because of the formula
=) _1 -
I'"(y) = [ 1n(y) y* 7 &7 ay (€.12)
0
one can develop, for r > - a,
E(XT 1n X) = 8T 5§%§§l (In 8 + y(a+r)) (C.13)
since T'(2) =T(a) y(a).
45
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APPENDIX D

Moments of the Negative Binomial

The density has the form

+
f(x;,r,p) = %%%?f% qxpr for x = 0,1,... (D.1)

O<r,0<p<1, ptq =1

Its probability generating function

T
Gu) = E(uY) = —B—— (0.2)

(1-qu)©

will be exploited broadly. Successive derivatives of (D.2) evaluated at

u =1 produce the factorial moments

m(s) = EX(X-1) *** (X-s+l) = (q/p)S r(r+l) *-+ (r+s=-1) (D.3)

to which one may apply some orderly substitution and obtain the first four

noments, using A = q/p

EX = Ar

Azr(r+1) + Ar

g
Fe
[}

(D.4)
A3r(r+1)(r+2) + 3A2r(r+1) + Ar

Iyl

w
w
]

AP (r+1) (r+2) (£43) + SASr(r+1) (r42) + 4A%r(r+1) + Ar

EX =

The mean anu variance of the population are




u = rq/p 02 = rq/p2 (D.5)

Use of (D.4) in (A.1l) and (A.2) provides the covariance matrix for

the ordinary method of moments

2
A2r + Ar = rq/p2 =g"

n Var(X)

2A3r + 3A2r + Ar = 02 g
P (D.6)

2A4r(r+3) + 4A3r(r+3) + Azr(2r+7) + Ar

n Cov(i,sz)

n Var(sz)

02[2(r+3)q+p2]/p2

The harmonic mean alternative requires

1. _ _pp"
B = (r-1)q (@.7)
B2 - B Il l[—————l - 1] du (D.8)
1+X (r-1)q o u (l-qu)r-l

for r # 1. The case r = 1 1is treated in [12, Appendix A}. Expressions
(D.7) and (D.8) are justified next along with computational formulae for

(D.8) when r is either a whole number or a whole number plus 0.5.

S Proof of (D.7). The generating function (D.2) is integrated.

; 1 1 r n=1 r
| 1, < T —du _ ~p "7 - e

: By = 6(wdu=pf - ) B
1+X 0 0 (l-qu)2 (-1 (q) (1~qu) 1|n=0 (r-1)q

as required.

..

e

. -
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hre .

R

~

Proof of (D.8). Replace u by uv and integrate twice.

L211 I{Pr 1

u=]1
E(1+X i g & Gluv) du dv = I & (r-1qu (1-qu)r_l u=0}

-_L ll__l.._ 1{ 4
T (r-D [ u -1 u
10 (1-qu)

as required.

Computational formulae require managing integrals of the type

1
=] [——1——r - l] du (p.9)
0 bLu(l-qu) u
Clearly JO = 0. It is useful to apply the partial fraction representation
repeatedly.
L. e (D.10)
u(l-qu) (1-qu) u(l-qu)
Since
1
f _‘Lgu__ = L 1 -1
r r-1 r-1
0 (1-qu) P

we have, from (D.10),

Let <r> be the greatest integer in r and apply the above formula to get

the representation

<£> 1 1
J = 2"“'[ .—1]+J (D.11)
: r-j r-j r-<r>
j=1 P

which is valid for r ><r>.
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4

Let r =<r>. One can show directly from (D.9) that

1
= [ _—9du_ _
Jy é =) in p (D.12)

and then

~1

rxl r=1 .
=1 ;—fg[rfj-l]-lnwir ST - me 01y
=1 T b P’ 3=l

Accordingly it is recognized from (D.8) and (J.9) that E(l/l+X)2 =[pr/(r-l)q]Jr_l

which, together with (D.7) and (D.13) enables

Var(—i—) D r€2 LY [ r-3_ 5y - pf np - iE:EElE.} (D.14)
1+X (r-1)q j;1 3 P P P P~ (r-I)q f :
1
!
for r an integer > 2 (empty sum is zero), and for r = 1, :
@ j
Ay -2 T _ P 2
Var(ip) = ¢ {jgl 7 (1n p)“} (D.15)

This latter formula is developed in [12], see (A.3) and (A.5).

Let r =<r>+ .5. The exploitation of (D.1ll) requires dealing with

o

Making the change qu = sin2 8 provides for manageable integrals of

e =

1
J =J =J’ [——————-_
r-<r> 1/2 0 u/l_-a

trigonometric functions. See [14, p. 316]. The result is

ln<———g—- (D.16)

l+v~I;

Ji72 =

o
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T &

2 <r> :
E() = (] == [p3-p") +p° J

X = (:-Dq =3 172 (D.17)

j=2

which is valid for <r>> 1. For r = 1/2 one needs, from (D.9),

o172 ®

u=1l 1 1 1
2 Y1-qu + ] [———-l—;]du
u= 0 Luw'l-qu

2p - 2 + 3172 (D.18)

using formula (14, p.316]. From (D.8)

1 2 2 4 2
E(m) =—E/p{26—2+J }=E G-p- Gln——-—-} (D.19)

1+ 7p
for r = 1/2.
The information matrix (4.19) contains a difficult element ﬁ22’
t-.2%). It may be managed using an integral representation of the tri-
gamma function [1, p. 2591,
1 lnu r-1
w'(r) = - [ =L ¢"7 qu - (D.20)
l-u
0
It follows that
= ' - )
hpy =¥ (r) - E{y'(r+X)}
1 1n r-1 r-1+X
=- ] Toolu - Eu )] du
-u
0
Lianw e N
=-] oo [l—-—L——r‘r]du (0.21)
0 u (1-qu)

50




This relationship can be expressed better if we make the change of variable

w = pu/(l-qu)

and manipulate to obtain

1
- _ In(p+qw) T-1
Aoy [ Toa—w v (D.22)

0

There is advantage in using (D.22) in the development of the determinant of

A, (4.19),
1
Al = - *57 J lB%R%&%l WL dw - J?
qp” 0 p
1
= lf {- 1 f In(ptqu) dw’t) - 1}
P 149 1 -w
1
=L T adaletata, (D.23)

using partial integration and

}L(M = ..of ﬂ_ri (l—w)n—l
1-w i n

In this form it is easily checked that

3 1 ) ]
limie 8] = Ly [ (AR oy 1a(p) =g
. - )
x>0 a0 qp
b (D-24)
limit [A| =0
r > ®

For computational purposes one can exploit the expansion
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1n w)) s q°

l-w n=2

which, when used in (D.23), produces

1
L

*® T o1yt
Z qn n ri(n-1).
1

o+l (p4r)!
1 E n oyt n!
= 1
p? n=1 o+l (n+r)!

Similar efforts applied to (D.22) can produce

A = § q% (z-1)! n!
227 L 2 (th-D)!

=] L e w

¥ q" n-l / wr(l--w)n_2 dw
2

(D.25)

(D.26)




APPENDIX E

Moments of the Beta Distribution

The Beta random variable X has density

. _ r(a + B) a-1l,, .8-1
f(xa,8) = Ty T(8) x (1-x)
for 0<x<1,0<q, 0c<g (E.1)

and

This is called the B(a,8) distribution and it is useful to note that 1-X
has a B(B,a) distribution.
Moments are obtained directly by manipulating gamma and beta functions.

For r> 0

ry _T(4d) Fa+r) _ (o+83-1)! (a+r-1)!
EXD) = F@) @+ - G-D! @+t oD (E.2)
R s; _ T(u+) I (a+r) T (3+s)
E[X"(1-X)7} = F'(@) TR) I (u+s+r+s) (E.3)
and the mean and variance follow
__ao (E.4)
' T4 +8
o2 = 28 (E.5)
@+8)° @8+1)
&
< Moments of negative order exist if o is large enough. If

a>r, 2 ~>s then

k.
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(e

-r I'(a+8) T (a-x)
EX ) = Fa) I(oa+B-1)

F(a+B) T (a-r) T(B-s)

EX 5 a-x)"° =

and the harmonic mean option will be available,

EGD)

i

var(_;_) = B(Q+B—12

@-1? (@-2)
and if a > 1, R > 1
1 1, _ _ _(a48-1)
Covixz™1x) = ~ (a-1) (B-D)
Symmetric Beta
Set a =3 and obtain
w=1/2
I
4 (20+1)
1, _ 20-1
E(X) T a-1
Var(%) = ————-———G(Z;-D
(a-1)" (a-2)
1 1., _ _ (Qe-1)
Covizs 10 =

(a-l)2

T'(a) T(R) T (a+B~r-s)

(E.5)

(E.7)

(E.8)

(E.9)

(E.10)

(E.11)

(E.12)

(E.13)

(E.14)

(E.15)




APPENDIX F

APL PROGRAMS 1

The function HARP performs the iteration (3.7) to estimate the i}
Poisson parameter from the harmonic mean. The left argument X 1is the
initial value (usually x) and the right argument is y of (3.6). The
function HMV computes the variance of y wusing (B.7) and (B.8). The

right argument is the set of parameter values, A.

V L<«X HARP Y;LL
(1] L+X
[2] Li1:LL+«L l
(3] L+«(1-%x-L) Y ;
T

[s5] >Lixv(|L-LL)20.0001

Vv V«HMV L;B;D;M;."t'
[11] N«50
[2] Ve(Ltx1)o, %1 ¥
(3] De((M+24p V), N)p(*-1M)x(AN)x'\ N
[u] Be(W M)p=-L
[5] Ve+/Bx V3D
(€] VelVil
{71 Vev-((1-%x-,)3]) %2

The function MONT produces E(Xr) for the symmetric beta distri-
bution using (E.2) with o = 8., The left argument is the (integral) crder
of the moment and the right argument is the parameter. The function VAR
computes the variance of the estimator, o of (3.16) using (3.17) and

(A.2). Again the argument is the parameter
55
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4

V Z«R MONT A;N;I
{11 I«0
(2] Z+(N,NvpAd)op1
£3] Li:I«I'+1
(4] 2+Zx(Q(N,N)pA+I-1)%do,+A+T~1
[5] +L1x1I<R
v

V V«VAR A
V(4 MONT A)-(u4x(3 MOND A)x(1 MONP A))-(3x(2 MONT A)#»2)-ux(u+8xA)%-2
Velx Ux(1+42x4 ) x4

v

T'.e polygamma functions are computed using PSI and JEX. When the
(scalar) left argument, N, is zero the psi function is produced. Integral
values of N index the order of the derivative of psi. The argument of
the function appears on the right. The technique comes from the asymptotic

expansions in Abramowitz.

V PeN PSI Y;Ci IV JIV ;K KK YY V323731

[1] A N IS THE ORDER OF I[HE DERIVATIVE OF THE PSI FUNCTION
[21] A Y (>0) IS THE ARGUMENT ,SCALAR OR VECTOR

(3] C«10

[u] IVerp¥«,Y

[s1] PelZ+Ke(pY)p0

[6] KK+«FC-Y{JIV+(V+Y<C)/IV]

[73] +Lixyv (pIV)=p(~V)/IV

L8] T«7(JIV]

{a] I+0

(10] L2:I+I+1
{113 YY«KK{IJpT[I]
(121 ZlIJ«(!N)x+/((YY-1)4\KX[T])x-1+N
{13] *L2x\I<pdIV
[14] ZeV\Z[rpJdIV]
{15] KeV\KX
[16] L1:+S1x1¥>0
(17] Pe-(@K+Y)-(2xK+Y)n-1
(18] =2+126
[19] S1:P«((!N-1)%x(Y+K)2-N)+(!N)x0,5x( Y+K) »-N+1
(20] Pe((T1)=N+1)xP+2+N JEX Y+K
v
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V J«N JEX YiC:MyF,E;A
{11 a USED IN THE POLYGAMMA FUNCTIONS
(2] C+-C+(5,(7%45),(5+7),(11%25) ,(5x455:11%x691),(651+7xu55))
[3] Ce((pY«,Y),6)pC
(Y M«
[5] Fe(Y®2)o x(2¢2x 1 M-1)x(1+2uM-1)+(N+2x 1 M=-1)x(N+1+2x1M-1)
[e] E«CxF
(71 Ae( 746 )x(Ya=-N+2xM)x( "1+ N+2xM) 3( ! 2xM)
(81 JeAx1+E(36Ix1+E[ ;S Ix1+E(s 4 1x1+E(;3Ix1+FE[;2]x1+E[;1]

The efficiency of the usual moment estimator (4.5) of gamma distri-
bution parameters is produced by EFF using (4.8) and (4.14). The efficiency
of (4.10) is computed by EFFH using (4.13) and (4.14), and the relative
efficiency (4.15) is the function REFF. Only the parameter a is needed
and it is entered on the right for all three. It must be > 2 for the

latter two functions.

Vv E<«EFF 7
£11] Ee(2x(Y+1)x((¥Yx(1 PSI 1))-~1))=*-1

V E<«EFFH Y
[11] Ee24(Y-2)3(¥-1)%2
{21 E«Ex(Yx1 pPSI Y)-1
{3} E«lx-1

V Z+«REFF A
(11 Z+(A-1)x(4-1)3(A+1)xA-2
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We turn now to the programs that support the negative binomial
distribution. The function MM computes the ordinary method of moments
estimators p , r of (4.25). The left argument is x and the right

argument is sz.

vV MeX MY S
{11 P«X:S
(2] R+(X%2):S-X
v

The determinant of the asymptotic covariance matrix of p, r 1is produced
(see (4.29)) by DM, whose left and right arguments are r and p.

The function PSIB computes x (= XB), 52 (=8), y (=Y), the

estimators p, ¥ (using MM), and the maximum likelihood estimate p, T
by applying Newton's method to (4.18) using p, ¥ for initialization.
The left argument, F, is the vector of observed frequencies corresponding

to the right argument J, the vector of variate values.

V Z«F PSIB JPH,PHD; Z;22
{11 XB<«(+/J%xF)++/F
[2] S«(:(+/F)-1)x(+/FxJ*2)~-(+/F)I)xXB %2
(31 Y«(+/FsJ+1)++/F
Lu] XB MM S
[5] R,P T
[6] L1:PP+P
[73 Z++/(0 PSI R+J)xF:+/F
8] ZZ+«+/(1 PSI R+J)xF++/F
[s] PH+Z-(0 PSI R)-(@R)-9R+XB
(10] PHD«ZZ-(1 PSI R)-(#+R)-+R+XB
(111 R+R-PH+PHD
(12] F<«R3+R+XB
{13] R,P
(14] =L1x:1(|PP-P)20,0001
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The function INFl computes the difficult element of the information matrix,

A22 of (4.20), using (D.26). The left and right arguments are r and p,

resp. The vector r must be whole numbers except it will also handle the

values .5, 1.5, ... , 4.5.

vV Z«R INF) PiNAB;C;2Z2:J Vi N1 NN
[1] x\"‘h:_rf
[2] C+«(1-P+« P)o,ay
{3l A«((pX) ,0R«,R)p0
(4] J+0
(53] L1:d«J+1
[61 V«(N+R[J])>55
{71 +L2x1(pN)=pNN«(~V)/N
(8] Z2Z+«(pN1«V/N)p0O
{9l A[Nl;J]**/(ZZ°.+IR[J]-1)*N1°.+\R[J]-1
£10] +L3x1(plN)=0
[11] L2:A{NN ;T 1« rON x(JRIJ1-1) 3 NL+R(J 3-1
{12] L3:+L1x\J<pR
[13] B«Q((pR),pN)pA=*2
{14] Z<«C+.xA+B
v

The function DETI and DI both compute the determinant of the information
matrix, but the former uses INFl in (4.19) and can handle the same set
of r values which are whole numbers plus .5. The latter, DI, uses (D.25)

and all values of r must be whole numbers.

Vv V+~R DETI P
(1] V(R INF1 P)xXQ(R+,R)e.3(Px2)x1-P
(2] V«V-Q((pR),pP)pPx-2

v
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V D«R DI P;A;B;C3;N;P1;J;2
[11] NerM
{21 C+«(1-P« ,P)eo . xN
{3l P1+«8((pR+ ,R) ,pP)pP=x-2
(4] A«((pN) ,pR+,R)p0
fs1 Z«(pN)pO
(6] J+0
(7] Li1:J«J+1
(8] A[:id1+x/(Zo.+1R[J]1)sNe.+\R[J] ]
(9l +L1x1J<pR ;
(101 B+«®((pR),oN)pohN+1
[11] D«PixD«C+.xA+B

The determinant (4.29) of the asymptotic covariance matrix (4.28)

is computed by the function DM 1

V D«R DM P
1] D+2x(1+R+ ,R)o . x (Px2)31-P+« P
v

and the efficiency of the moment estimator is NBEF

Vv E«R NBEF P
[1] E++(R DM P)xQR DETI P
v

The function HAR implements the iteration scheme described in

* *
(4.32) and produces the harmonic mean based alternative estimators p , r

from the system (4.30). The left argument is x and the right argument

is vy.

VY P«X HAR Y;PP;C;G;GP32Z
{11 P«@+0.5
[2] CeY-1-YxX
[3] ReX
. {4] L1:PPeP
{51] Ge( Z+«P*xR)-Y-CxP
(6] GP+C+ZxXx(G+@P ) +Q*2
(71 P+«P-G:CP
(81 ReXxP:Q«l-P
{9] R,P,G
[10] =+L1x1({G)21E"6

3
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The Var(1l/1+X) 1is computed by VHM1 using (D.1l4) and (D.15) for r wvalues
that are whole numbers, and using (D.17) and (D.19) for r wvalues that

are half way between whole numbers.

V Z+«R VHM1 P;AA3;BB;B;I;PP;RR;SyH;HH HHH M U1, U2;J ;N3 NN ;@;:SS

(1] A VAR OF 3(1+X) FOR NEG BIN(R,P);R MUST BE WHOLE OFR WHOLE PLUS .°%
(2] R«(~U2+«R=0,5)/R+(~U1«K=1)/R

[3] Z+«S«((RR+p R+ ,R),PP+pP+,P)p0

(u] +L3x1(pR)=0

(5] I+0

(6] L1:I+I+t

[71] B+«R{I]-1

(8] +(3+x26)x\B=|B

{9l B«B-1

[10] S[I;l«-aP

{11] +(2+1286)x1B=\B

{123 S[I;]e2x@2:1+P%0.5

{13] BB«(PpP,LB)pRLI]-1+1l8

{14] AA«(Po.»-R[I]-1+1lB)-1

{151 S[I;J«S[I;])++/AA+BB

[16] <Lix1\I<|LRR+pQR

[17] L3:R«(~U2)\R

[18] =+Luxi1(pR)=0

[1¢] RLUZ/\RR+RR++/U23+«C.5
{20] oS+(~U2)\[2] &
[21] +(2+126)*x10=+/U2

[22] STU2/1\RR;)«+(2x@231+P%x0,5)+2x(Px0.5)-1
[z3] 2«5x(H+QPo , xR) :HAH+(R-1)o0 ,x1-P

{24) M«((HH~(RR,PP)pP)-H)+HHH

2% Cvl=-Mx2

[26) LusN«(2x®@50:Px1000)t0g+1-P

[27] XN[(VeNs50)/1PPJ«5Q

(ze] SS+«FPpO

[29] &+0

[30] Li:d+d+2

[31] OS5«+/(Qe. s NN)+(PE,NN)p (\NN«TN[J]) =2
{32] =Lix\J<PP

[33] +(1+126)x(+/U1)=0

[34] Ae(~U1)\R

[35] ELU1/VRR«BR++/U1]+1

[(36] Z«(~U21)\[1] 2

[37]) ZIUi/\RE;J«Px(S55-Px((aP)*2):Q):Q

<1




*—
The function DMSI computes the determinant of M 1 from (4.36). Two
auxiliary functions are needed: G22 provides 851 and 89 from the
*
second row of A in (4.33) (compare (2.17)) and DMS1 is needed to handle

values of r = 1, special handling being required becuase of (4.34).

V X«R DMSI P;RR;PPHH;C3L;G;:G21;2Z;U
{11 X+~((pR),pP)p0
[2] Re(~U«R=1)/R
(31 Z«(L+Ro ,+(P*2)xQ«1-P)xG«QR G22 P
fu) Z«( Z2+(QG21 )sHH+«( (RR+pR) ,PP+pP)pP) %2
(5] Z«Z23:(LxC+«(((R-1)e.xQ)*x2)xR VHM1 P)-8G21%2 '
[e] XL(~U)Y/\RR++/U; J+2 3
[7] +(2+X26)%x10=+/U
(8] XLU/\RR++/U ;1+DMS1 P

V Z2«DMS1 P;¥
(11 Z«((0.5%x(@P)*2 ) +W+1-P-@P) %2
[2] 2«Z2:(((pP)p1 VEM1 P)X((l-P)*3))-(VxP)*2

V Z«R G22 P;PP;RR;T;TT HiHH VW
(1] H+«( (PP+pP+,P) ,RR«pR+ R)pPo . %R
(21 AH«Q(RR,PP)pP
{31] Z+HH~H
ful] VeR=1
(5] TT«{(~V)/\RR
J+HxQ(RR,PEP)poP
2040 el P )42 03771402077 )0 (~V)/R-1
C2:«( (PP ,RR)pR)xH+HH
G21*G21-(l-H)%Q(RR,PP)Dl-P

[aen N N aun I aan |
[TO3N < SRS Y, )
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* *
The efficiency of the harmonic mean based estimator p , r is computed

by the function EFF

V E«R EFF P
{1] E«(R DMSI P):QR DETI P

v
Both EFr and NBEF used DETI and, for that reason, are restricted to only |
% *
a few fractional values of r. The relative efficiency of p , r with
respect to p, r 1is not so restricted. It is computed by RELEF and accepts I

any r > O.
V E«R RZLLF P

[11] E«((R DM P)x(R DMSI P))
v

Methods for computing the efficiency of beta distribution estimators
are supported by the following programs: The determinant of the information
matrix (4.39) is computed by the functions DINF and DDINF. The former takes

a single (vector) argument and produces a symmetric, sgare matrix of

values |4 for all pairs of components of the arguments. If the arguments

a and R must be ent red separately, then the two argument DDINF can be

used.

V L+«DINF A;N;3;C
(13 L+, L+Ado 44
(2] B+(N,N«pA)p1 PS
(3] Le(Co,xC)-(Co, +

Y M~

V L«A DDINF B3yMiNiCA;CB;D

(1] Le,LeA~ .48

2] D«((M+pA) N«pB)p1 PSI [

(2] L«(CAe.xCB)-( (CA«1 P5I A)e.+0B+1 P5I B)xD
v
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The function DETMM accepts two by two matrices A (on the left)
and C (on the right) and computed the determinant |[M| = |C|/|A|2
of (2.7). The function ADET uses it to produce an array of such
determinants. The arguments H and C are four-dimensional and may be
thought of as an M by N array of 2 by 2 matrices. The left set, H,
are the coefficient arrays A of (2.2) and the right set, C, are the

covariances (2.6)

V M«A DETUM C

[1]  M«(EA)+.xQCBA

[2]  Me(M[1;1]x402;2])-M[1;2]%2
v

V MM<«H ADET C3;N;I;Jd M
(1] MM<((M«1+724pH) N+ 14pH)p0
(2] I+J«0
[3])] Li:I«T+1
[u] J+0
(5] L2:J+«J+1
(6] MMUT;J 1«HL;3I3J] DETMM CL; 3I:d 1]
L7] >L2x1J <N
(8] +Lix1I<M
v

The computation of the efficiency of the ordinary moment estimator
(4.42) requires the coefficient array (4.43) and the convariance array
(4.45). The fdrmer is computed by the function COEFM and the latter by
COVM. Each takes a single vector argument and computes the required
i _ values for all pairs of components in the argument. The function COVM

requires the beta distribution moments (E.2) and these are computed by

. MONT.
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V H«COEFM Ay;N ;B
{1] He(2,2,8,N«pd)p1
(21 H{1313;)«(N ,N)p-4
{31 fl1;2;;]1«Q(N,N)p4
(s} Be(Ao,xA)x(Ao.+4)%(Ac,.+4+1)
[s1] Hl231;;1«B+(A°.-4)x(N N)pA
(6] H{2:2; 3]1«B+((=A)o ., +A)xQ(N,N)pA
[7] HeH:(2,2,N,N)pdo.+A

V Z«R MONT A;N3I

{11 I+0

{21 Z«(N ,N«pA)p1

[3] Li1:T+«I+1

[u] Z+Z2x(Q(N N)pA+I-1)+Ao . +4+I~1
[5] +L1x1I<R

v

All these are utilized by EFBM which computes the efficiency (2.22).

The output is a symmetric matrix. The argument must have positive components.

V E«EFBM AL iC ;HM
1] L«DINF A
(2] C«CCVM A.
(3] H«COEFM A
Cu] M+H ADET C
{51 E+«3Mx[

The efficiency of (4.48) is handled in similar fashion. (Also
with single arguments.) An array of 2 by 2 matrices (4.49) is produced
by the function COEF and the matching matrices (4.50) by COV. These are

used by EFBH to compute a symmetric matrix of efficiencies. The argument

must have all components > 2.
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[1)
(2]
[31
Cul
[s5]

v

v

H«COEF A; N
H+(2,2,N ,N«pAd)p-1
AL2;2; ;1+Ao +A-1
Hl131;;1«QH02;2; ;1]

C«COV A3 N

C+(2,2,N,Neph)p1l
Cl1;1;;1+(A0 . 44-1)xQA0, 34-2
Cl1;2;:1«C[2;1;;)¢-Ae.+4-1
Cl2:;2;:1«(A0, +A-1)x(Ade. 2A-2)

E«EFBH A:CiH:L
L«DIRNF A
H«COEF A

cC+CoV A

M«H ADET C
EvtMMx/],

The estimator (4.52) is managed in like fashion, only this time

the arguments o (left) and B8 (right) must be entered separately with

a >2, B >0. The coefficients (4.53) are computed by the function COEFH

and the covariances (4.54) by COVH. These are drawn on by EFBMH to produce

the efficienices

(1]
(2]
[3]
(4]

V H«A COEFH B M;N
He(2,2,(¥+«pA) ,NepB)p-1
Al131;;)«(Ae.+3)+ (M ,¥)p-B
2l132;3;1«(Q(N,M)pA) A0, +8
d023153)+%(A-1)0,1B




V C+A COVH By;N:M
(1] Ce(2,2,(MvpA ) N*pB)pO
(2] Cl1;1;;]«(Ao.xB)3Ao +B+1
(3] Cl1;2;;3+«C02;1;;1«(M,N)p-B
fu] CL2;2;31+«(40.+B-1)%(A-2)e . 4B

Vv E«A EFBMH B;CiH;M;L
(1] L+«A DDINF B
(2] H+«A COEFH B
3l C+A COVH B
[ul M<«H ADET C
5] E«tMx],
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